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Case study: Chile
Centralized admission system
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send <= 10 applications to

send number of spots to
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send <= 10 applications to

send number of spots to

matches

Based on students’ 

scores (weighted average 

of high school grades and 

standardized test scores)
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Statistical parity difference (SPD):

𝑆𝑃𝐷 = 𝑃 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴 = 𝑎 − 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑|𝐴 ≠ 𝑎)

0: ideal

-0.1 – 0.1: “fair”

A: sensitive attribute (e.g. 
gender, race, income)
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gender: 8% income: 10%

Programs with strongly unequal admission rates,

i.e., |SPD| > 0.1
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Affirmative Action Policies

Favor disadvantaged groups

• Quota

• Bonus points

• Etc.
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What’s a good number of bonus 
points?
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bonus for men
bonus for women

* not to scale :)
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bonus for men
bonus for women

* not to scale :)
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𝑜𝑏 = 𝑙𝑏 + 𝜆 ∙ 𝑆𝑃𝐷𝑏



UNCERTAINTY 
AHEAD
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Data
2004 – 2017:

- Student features (e.g. 2016: 60 000)

- Program features (e.g. 2016: 1 500)

- Applications
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Last year’s ideal policy
Pro: Simple, fast, transparent

Con: Risky (outlier)
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Average policies of multiple years
Decreases risk

Limited number of years
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Simulate application sets!
Sample students from past years and apply matching

However: Programs change from year to year

Idea: Learn last year’s application behavior
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Multi-label probabilistic classifier

0.01 0.19 0.43 0.37
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Strategy comparison
(i) All programs

(ii) Only programs that consistently disadvantage the same demographic group
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Error in objective function relative to ideal 
policies. Smaller values are better.

All programs Consistently unequal

Gender Income Gender Income

Strategy Mean SD Mean SD Mean SD Mean SD

Historical – 1 year 0.37 1.11 0.44 1.31 1.31 1.88 1.79 1.63

Historical – 3 years 0.30 0.94 0.34 1.06 1.02 1.81 1.36 1.62

Historical – 5 years 0.32 0.99 0.33 0.98 1.22 1.20 1.63 1.57

Predictive – 50 sets 0.28 0.90 0.37 1.13 0.84 1.16 2.28 2.12

Predictive – 200 sets 0.29 0.90 0.36 1.11 0.91 1.15 2.14 1.97
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Difference in absolute SPD relative to no 
intervention. Lower values are better.

All programs Consistently unequal

Gender Income Gender Income

Strategy Mean SD Mean SD Mean SD Mean SD

Historical – 1 year 0.0014 0.0339 -0.0013 0.0383 0.0028 0.0922 -0.0774 0.1000

Historical – 3 years -0.0005 0.0269 -0.0034 0.0266 -0.0153 0.1069 0.0983 0.0704

Historical – 5 years 0.0005 0.0234 -0.0037 0.0270 -0.0037 0.0858 -0.0849 0.0827

Predictive – 50 sets -0.0003 0.0124 -0.0020 0.0210 -0.0156 0.0586 -0.0625 0.0822

Predictive – 200 sets -0.0002 0.0126 -0.0023 0.0215 -0.0135 0.0575 -0.0670 0.0817
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Conclusion
& future work
• More application sets increase robustness

• Historical approach more practical

• Predictive approach advantageous if historical data is limited

• Future research: influence of policies on application behavior
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