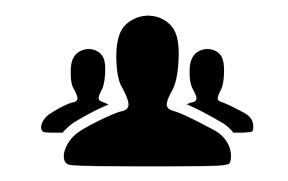
Towards Data-Driven Affirmative Action Policies under Uncertainty

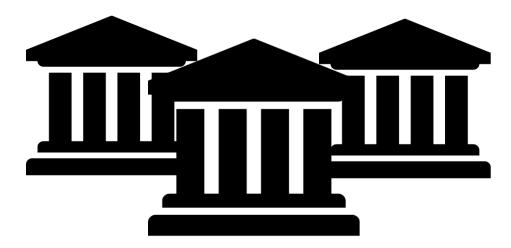
Corinna Hertweck

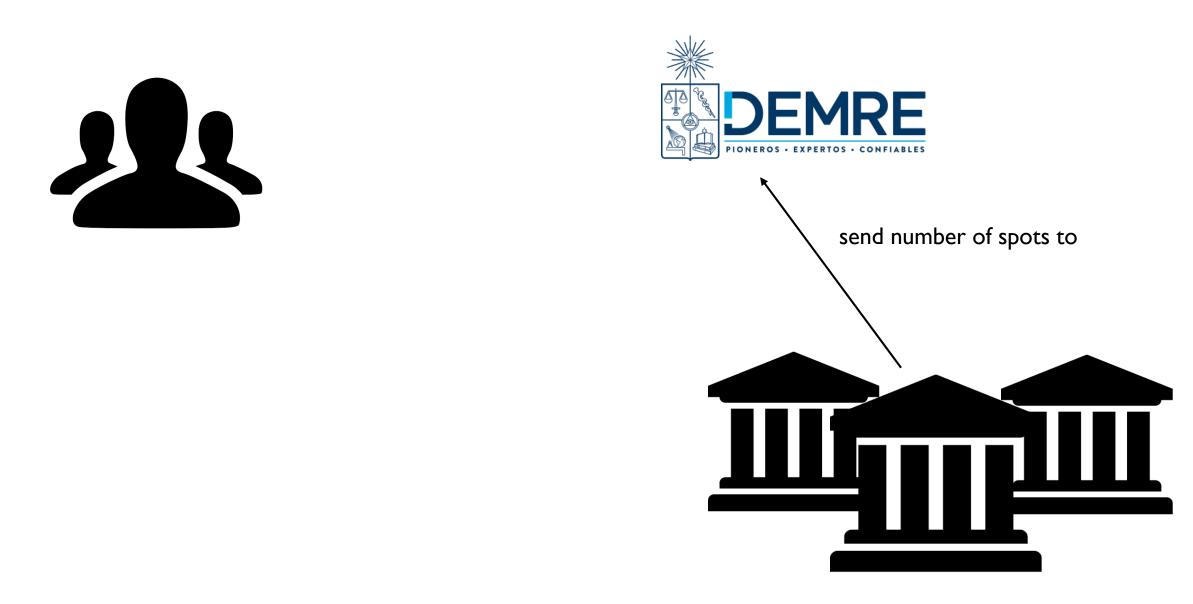
Joint work with Carlos Castillo and Michael Mathioudakis

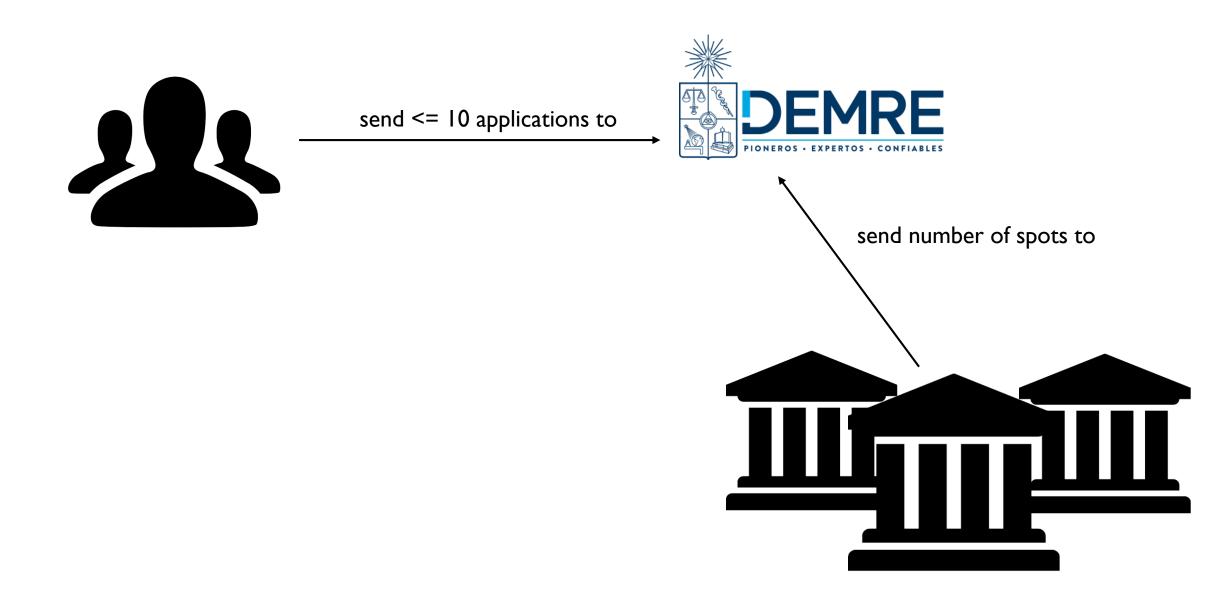
Case study: Chile

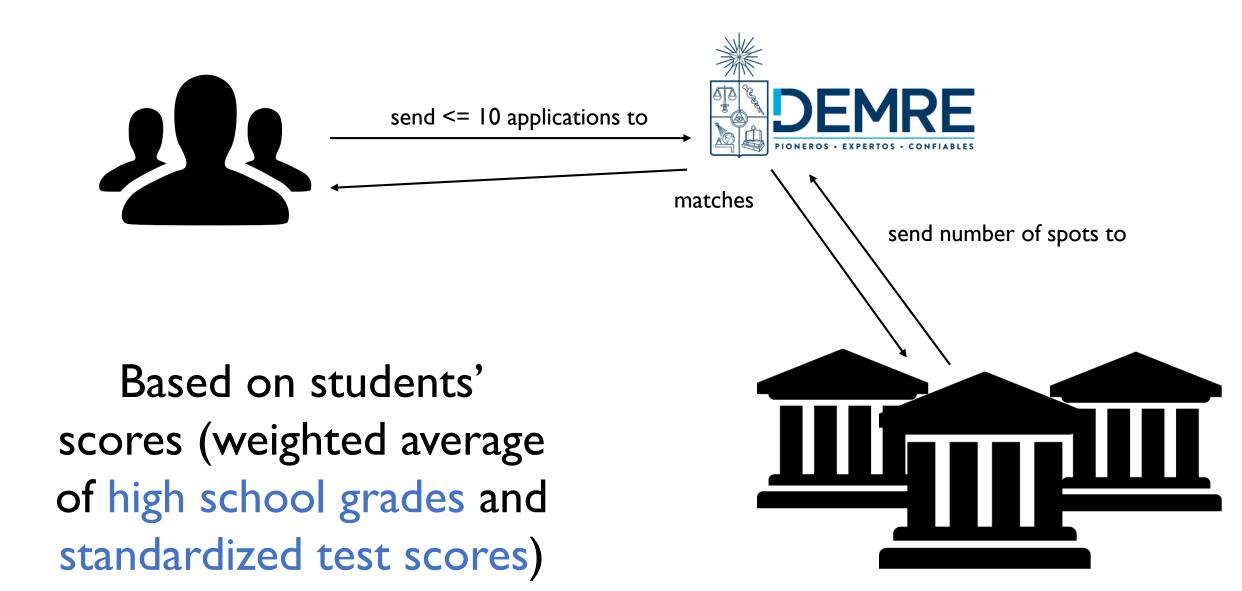
Centralized admission system

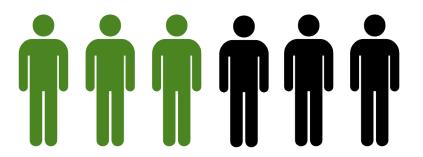












Statistical parity difference (SPD):

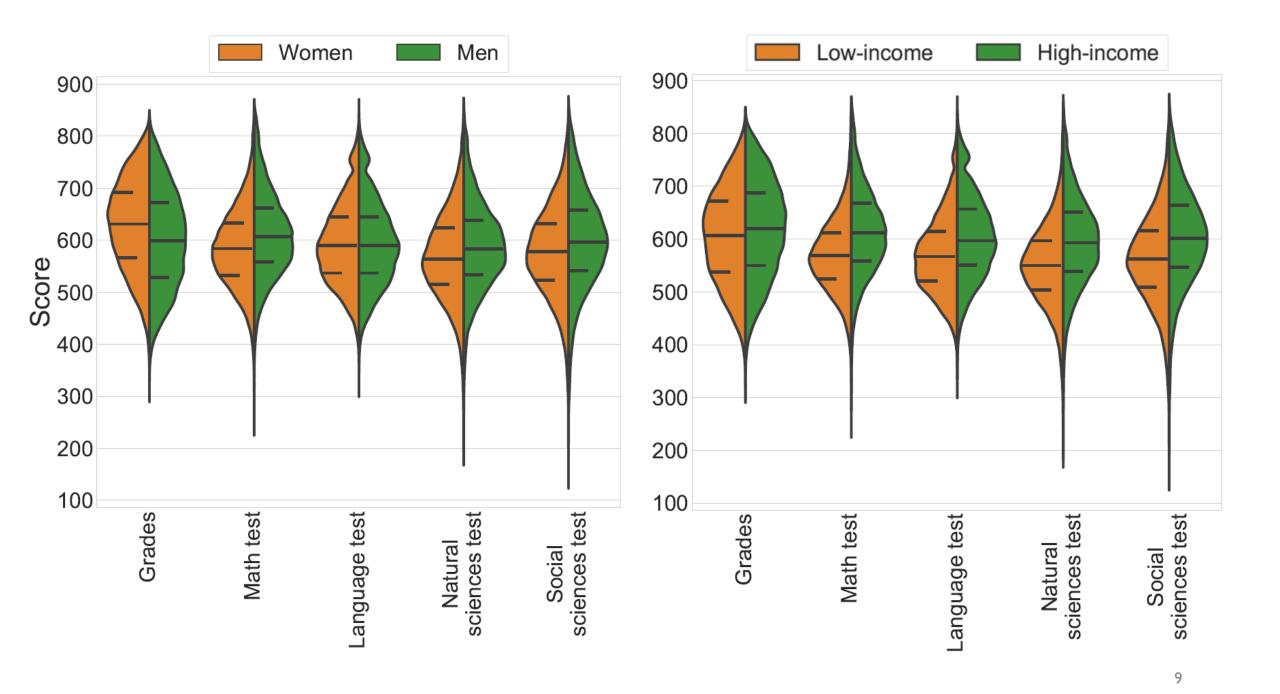
 $SPD = P(accepted|A = a) - P(accepted|A \neq a)$

0: ideal -0.1 – 0.1:"fair"

A: sensitive attribute (e.g. gender, race, income)

gender: 8% income: 10%

Programs with strongly unequal admission rates, i.e., |SPD| > 0.1



Affirmative Action Policies

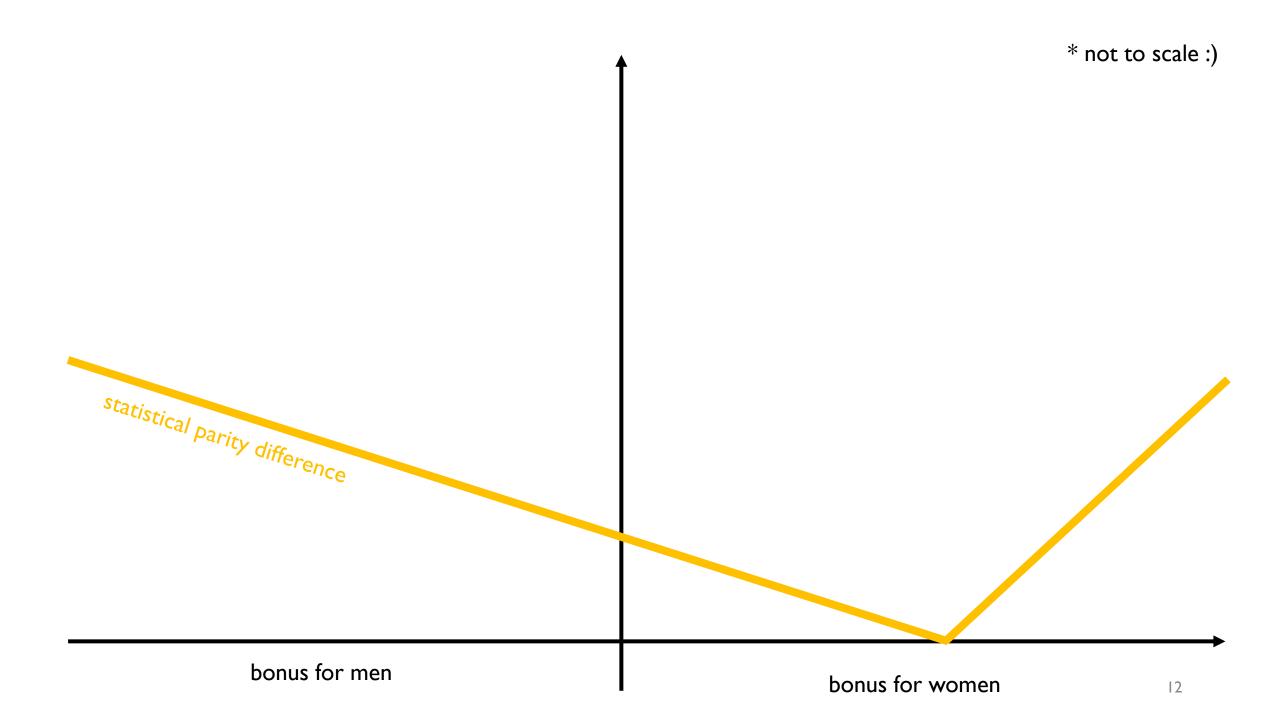
Favor disadvantaged groups

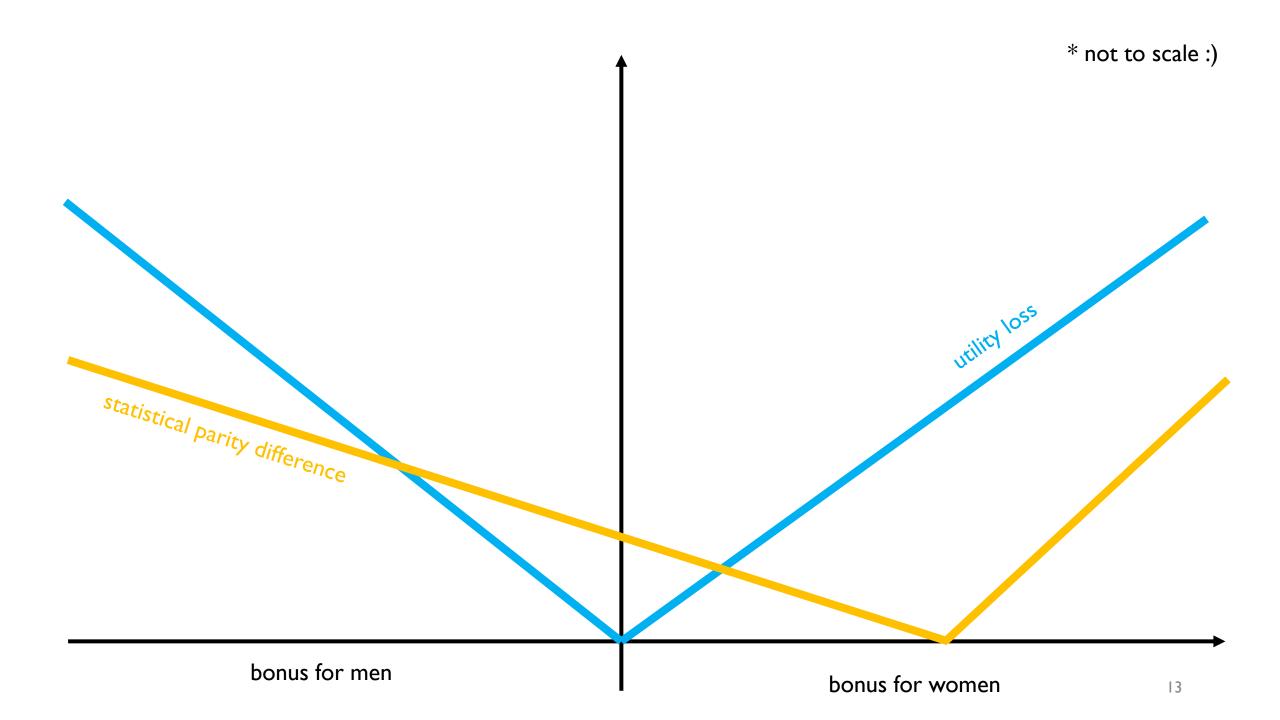
- Quota
- Bonus pointsEtc.

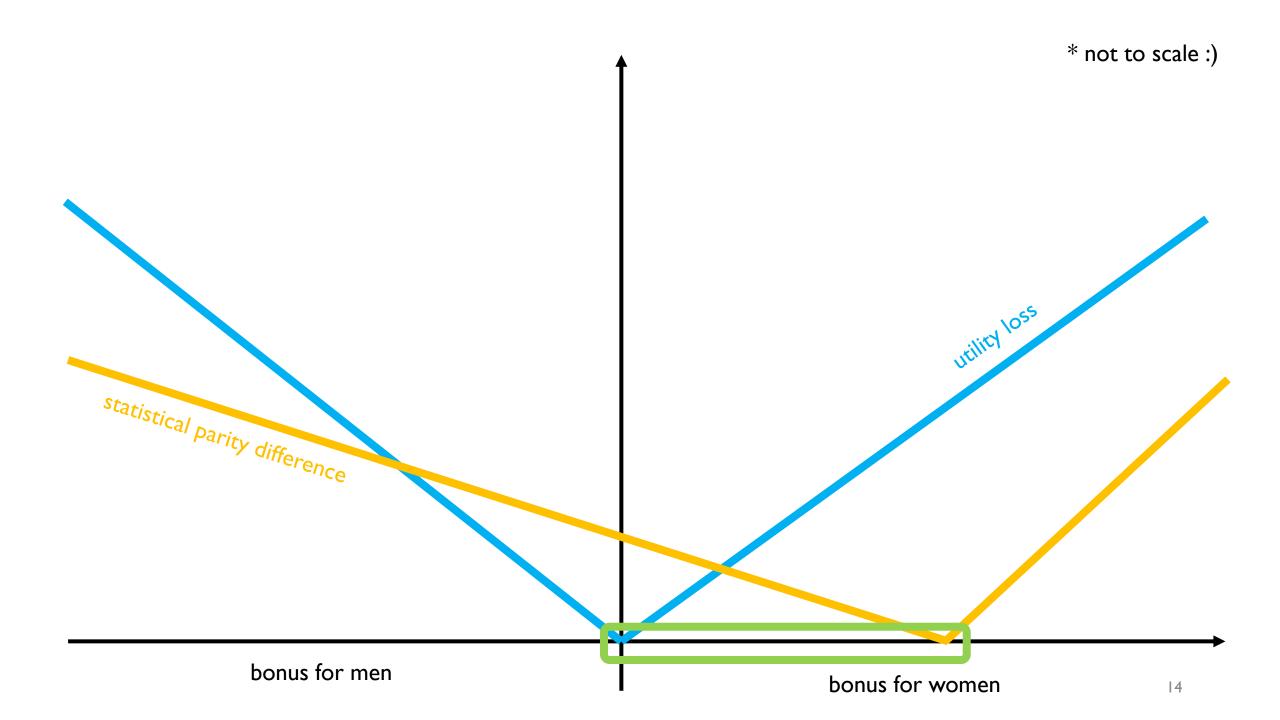
Sundan Mandan Sundan

Sublin Advantaged a low

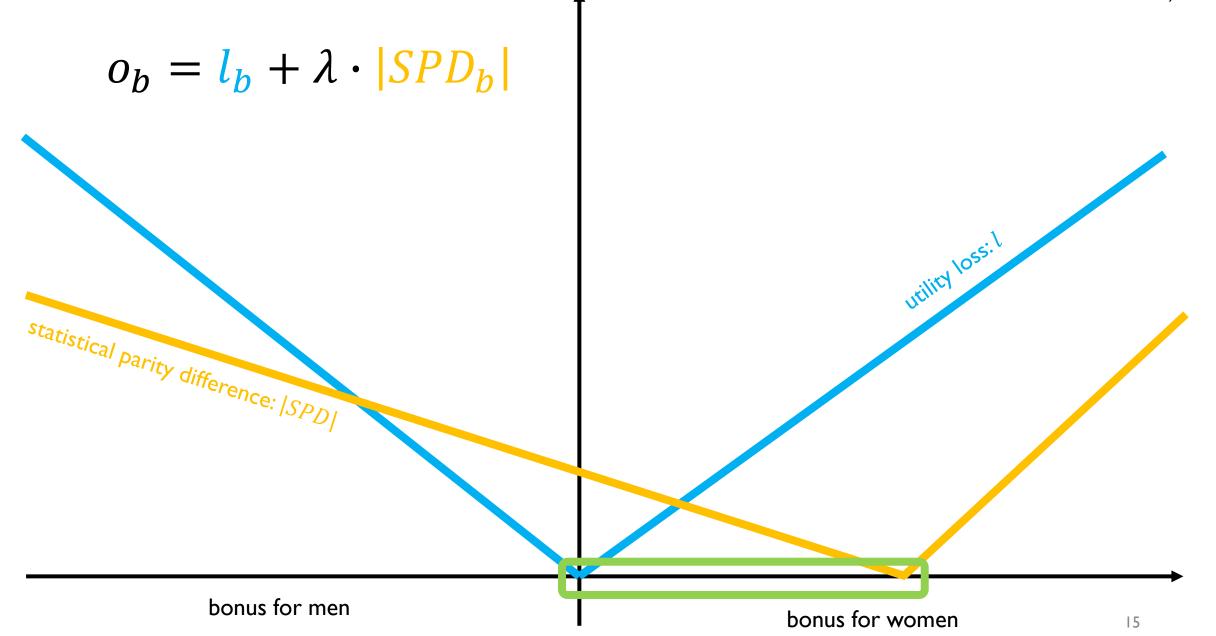
What's a good number of bonus points?







* not to scale :)



UNCERTAINTY AHEAD

Data 2004 – 2017: - Student features (e.g. 2016: 60 000) - Program features (e.g. 2016: 1 500)

Last year's ideal policy

Pro: Simple, fast, transparent Con: Risky (outlier)

Average policies of multiple years

Decreases risk

Limited number of years

Simulate application sets!

Sample students from past years and apply matching However: Programs change from year to year Idea: Learn last year's application behavior



Strategy comparison

(i) All programs

(ii) Only programs that consistently disadvantage the same demographic group

42

Error in objective function relative to ideal policies. Smaller values are better.

	All programs				Consistently unequal			
	Gender		Income		Gender		Income	
Strategy	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Historical – I year	0.37	1.11	0.44	1.31	1.31	1.88	1.79	1.63
Historical – 3 years	0.30	0.94	0.34	1.06	1.02	1.81	1.36	1.62
Historical – 5 years	0.32	0.99	0.33	0.98	1.22	1.20	1.63	1.57
Predictive – 50 sets	0.28	0.90	0.37	1.13	0.84	1.16	2.28	2.12
Predictive – 200 sets	0.29	0.90	0.36	1.11	0.91	1.15	2.14	1.97

Difference in absolute SPD relative to no intervention. Lower values are better.

	All programs				Consistently unequal			
	Gender		Income		Gender		Income	
Strategy	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Historical – I year	0.0014	0.0339	-0.0013	0.0383	0.0028	0.0922	-0.0774	0.1000
Historical – 3 years	-0.0005	0.0269	-0.0034	0.0266	-0.0153	0.1069	0.0983	0.0704
Historical – 5 years	0.0005	0.0234	-0.0037	0.0270	-0.0037	0.0858	-0.0849	0.0827
Predictive – 50 sets	-0.0003	0.0124	-0.0020	0.0210	-0.0156	0.0586	-0.0625	0.0822
Predictive – 200 sets	-0.0002	0.0126	-0.0023	0.0215	-0.0135	0.0575	-0.0670	0.0817

Conclusion & future work

- More application sets increase robustness
- Historical approach more practical
- Predictive approach advantageous if historical data is limited
- Future research: influence of policies on application behavior